Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
Plant Sci ; 344: 112082, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38583807

The expression of R2R3-MYB transcription factor PeRAX2 increased transiently upon CdCl2 exposure (100 µM, 48 h) in leaves and roots of Populus euphratica. We observed that overexpression of PeRAX2 increased Cd2+ concentration in Arabidopsis root cells and Cd2+ amount in whole plant, which was due to the increased Cd2+ influx into root tips. However, the Cd2+ influx facilitated by PeRAX2 overexpression was substantially reduced by LaCl3 (an inhibitor of Ca2+-channels), suggesting that PeRAX2 could promote the Cd2+ entering through PM Ca2+-permeable channels (CaPCs) in the roots. It is noting that the expression of annexin1 (AtANN1), which mediates the influx of divalent cations through the PM calcium channels, was upregulated by Cd2+ in PeRAX2-transgenic Arabidopsis. Bioinformatic analysis revealed that the AtANN1 promoter (AtANN1-pro) contains four cis-elements for MYB binding. The PeRAX2 interaction with AtANN1-pro was validated by LUC reporter assay, EMSA, and Y1H assay. Our data showed that PeRAX2 binds to the AtANN1 promoter region to regulate gene transcription and that AtANN1 mediates the Cd2+ entry through CaPCs in the PM, leading to a Cd2+ enrichment in transgenic plants. The PeRAX2-stimulated Cd2+ enrichment consequently resulted in high H2O2 production in root cells of transgenic plants. The expression of AtSOD and AtPOD and activities of CAT, SOD, POD increased in the transgenic lines under Cd2+ stress. However, the Cd2+-upregulated expression and activity of antioxidative enzymes were less pronounced in the PeRAX2-overexpressed lines, compared to the wildtype and vector controls. As a result, root length and plant growth were more suppressed by Cd2+ in the transgenic lines. Our data suggest that transcriptional regulation of AtANN1 by PeRAX2 can be utilized to improve Cd2+ enrichment and phytoremediation, although the enriched Cd2+ affected antioxidant defense system and plant growth in the model species.

2.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Article En | MEDLINE | ID: mdl-38593488

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Homeostasis , Phospholipase D , Plant Proteins , Populus , Salt Stress , Arabidopsis/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/drug effects , Phospholipase D/metabolism , Phospholipase D/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plants, Genetically Modified , Populus/metabolism , Populus/genetics , Populus/drug effects , Reactive Oxygen Species/metabolism , Salt Stress/genetics , Salt Tolerance/genetics , Sodium Chloride/pharmacology , Two-Hybrid System Techniques
3.
Arch Biochem Biophys ; 754: 109896, 2024 Apr.
Article En | MEDLINE | ID: mdl-38417691

AIMS: The purpose of this study was to explore the role of RAE1 in the invasion and metastasis of gastric cancer (GC) cells. MATERIALS AND METHODS: RAE1 expression in GC cells was determined by reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB). Cell models featuring RAE1 gene silencing and overexpression were constructed by lentiviral transfection; The proliferation, migration, and invasion ability of cells were detected by cell counting, colony formation assay, would healing assay, and transwell invasion and migration test. WB analysis of ERK/MAPK signaling pathway (ERK1/2, p-ERK1/2, c-Myc) and EMT-related molecules (ZEB1, E-cadherin, N-cadherin, and Vimentin). RESULTS: The expression level of RAE1 in GC was notably higher than in adjacent tissues. Elevated RAE1 expression correlated with an unfavorable prognosis for GC patients. Knockdown of RAE1, as compared to the control group, resulted in a significant inhibition of proliferation, migration, and invasion abilities in GC cell lines. Furthermore, RAE1 knockdown led to a substantial decrease in the expression of N-cadherin, vimentin, ZEB1, p-ERK1/2, and c-Myc proteins, coupled with a marked increase in E-cadherin expression. The biological effects of RAE1 in GC cells were effectively reversed by the inhibition of the ERK/MAPK signaling pathway using SCH772984. Additionally, RAE1 knockdown demonstrated a suppressive effect on GC tumor size in vivo. Immunohistochemistry (IHC) results revealed significantly lower expression of Ki-67 in RAE1 knockout mice compared to the control group. CONCLUSIONS: RAE1 promotes GC cell migration and invasion through the ERK/MAPK pathway and is a potential therapeutic target for GC therapy.


Epithelial-Mesenchymal Transition , Stomach Neoplasms , Animals , Humans , Mice , Cadherins/genetics , Cadherins/metabolism , Carcinogenesis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness/genetics , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Vimentin/genetics , Vimentin/metabolism
4.
Tree Physiol ; 44(3)2024 Feb 11.
Article En | MEDLINE | ID: mdl-38366380

Nitrogen (N) plays an important role in mitigating salt stress in tree species. We investigate the genotypic differences in the uptake of ammonium (NH4+) and nitrate (NO3-) and the importance for salt tolerance in two contrasting poplars, salt-tolerant Populus euphratica Oliv. and salt-sensitive P. simonii × (P. pyramidalis ×Salix matsudana) (P. popularis cv. 35-44, P. popularis). Total N content, growth and photosynthesis were significantly reduced in P. popularis after 7 days of exposure to NaCl (100 mM) supplied with 1 mM NH4+ and 1 mM NO3-, while the salt effects were not pronounced in P. euphratica. The 15NH4+ trace and root flux profiles showed that salt-stressed poplars retained ammonium uptake, which was related to the upregulation of ammonium transporters (AMTs) in roots, as two of the four AMTs tested significantly increased in salt-stressed P. euphratica (i.e., AMT1.2, 2.1) and P. popularis (i.e., AMT1.1, 1.6). It should be noted that P. euphratica differs from salt-sensitive poplar in the maintenance of NO3- under salinity. 15NO3- tracing and root flux profiles showed that P. euphratica maintained nitrate uptake and transport, while the capacity to uptake NO3- was limited in salt-sensitive P. popularis. Salt increased the transcription of nitrate transporters (NRTs), NRT1.1, 1.2, 2.4, 3.1, in P. euphratica, while P. popularis showed a decrease in the transcripts of NRT1.1, 2.4, 3.1 after 7 days of salt stress. Furthermore, salt-stimulated transcription of plasmalemma H+-ATPases (HAs), HA2, HA4 and HA11 contributed to H+-pump activation and NO3- uptake in P. euphratica. However, salt stimulation of HAs was less pronounced in P. popularis, where a decrease in HA2 transcripts was observed in the stressed roots. We conclude that the salinity-decreased transcripts of NRTs and HAs reduced the ability to uptake NO3- in P. popularis, resulting in limited nitrogen supply. In comparison, P. euphratica maintains NH4+ and NO3- supply, mitigating the negative effects of salt stress.


Ammonium Compounds , Populus , Nitrates/metabolism , Sodium Chloride/pharmacology , Populus/metabolism , Plant Roots/physiology , Ammonium Compounds/metabolism , Membrane Transport Proteins , Proton-Translocating ATPases/metabolism , Proton-Translocating ATPases/pharmacology , Nitrogen/metabolism
5.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38423014

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Chromatin , Nuclear Proteins , Animals , Chromatin/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , DNA/genetics , DNA End-Joining Repair , Histones/genetics , Histones/metabolism , Chromosome Pairing , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Mammals/metabolism
6.
Drug Metab Rev ; 56(1): 62-79, 2024 Feb.
Article En | MEDLINE | ID: mdl-38226647

Melatonin, historically recognized for its primary role in regulating circadian rhythms, has expanded its influence particularly due to its wide range of biological activities. It has firmly established itself in cancer research. To highlight its versatility, we delved into how melatonin interacts with key signaling pathways, such as the Wnt/ß-Catenin, PI3K, and NF-κB pathways, which play foundational roles in tumor development and progression. Notably, melatonin can intricately modulate these pathways, potentially affecting various cellular functions such as apoptosis, metastasis, and immunity. Additionally, a comprehensive review of current clinical studies provides a dual perspective. These studies confirm melatonin's potential in cancer management but also underscore its inherent limitations, particularly its limited bioavailability, which often relegates it to a supplementary role in treatments. Despite this limitation, there is an ongoing quest for innovative solutions and current advancements include the development of melatonin derivatives and cutting-edge delivery systems. By synthesizing the past, present, and future, this review provides a detailed overview of melatonin's evolving role in oncology, positioning it as a potential cornerstone in future cancer therapeutics.


Melatonin , Neoplasms , Humans , Melatonin/therapeutic use , Melatonin/metabolism , Signal Transduction , Biology , Neoplasms/drug therapy
7.
Diabetes ; 73(2): 225-236, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37976214

Endothelial cells (EC) play essential roles in retinal vascular homeostasis. This study aimed to characterize retinal EC heterogeneity and functional diversity using single-cell RNA sequencing. Systematic analysis of cellular compositions and cell-cell interaction networks identified a unique EC cluster with high inflammatory gene expression in diabetic retina; sphingolipid metabolism is a prominent aspect correlated with changes in retinal function. Among sphingolipid-related genes, alkaline ceramidase 2 (ACER2) showed the most significant increase. Plasma samples of patients with nonproliferative diabetic retinopathy (NPDR) with diabetic macular edema (DME) or without DME (NDME) and active proliferative DR (PDR) were collected for mass spectrometry analysis. Metabolomic profiling revealed that the ceramide levels were significantly elevated in NPDR-NDME/DME and further increased in active PDR compared with control patients. In vitro analyses showed that ACER2 overexpression retarded endothelial barrier breakdown induced by ceramide, while silencing of ACER2 further disrupted the injury. Moreover, intravitreal injection of the recombinant ACER2 adeno-associated virus rescued diabetes-induced vessel leakiness, inflammatory response, and neurovascular disease in diabetic mouse models. Together, this study revealed a new diabetes-specific retinal EC population and a negative feedback regulation pathway that reduces ceramide content and endothelial dysfunction by upregulating ACER2 expression. These findings provide insights into cell-type targeted interventions for diabetic retinopathy.


Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Animals , Mice , Humans , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Retina/metabolism , Ceramides , Sphingolipids
8.
Circulation ; 149(11): 843-859, 2024 03 12.
Article En | MEDLINE | ID: mdl-38018467

BACKGROUND: Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated. METHODS: We performed a metabolomics study to evaluated GM3 level in plasma of human patients with AAA. We profiled GM3 synthase (ST3GAL5) expression in the mouse model of aneurysm and human AAA tissues through Western blotting and immunofluorescence staining. RNA sequencing, affinity purification and mass spectrometry, proteomic analysis, surface plasmon resonance analysis, and functional studies were used to dissect the molecular mechanism of GM3-regulating ferroptosis. We conditionally deleted and overexpressed St3gal5 in smooth muscle cells (SMCs) in vivo to investigate its role in AAA. RESULTS: We found significantly reduced plasma levels of GM3 in human patients with AAA. GM3 content and ST3GAL5 expression were decreased in abdominal aortic vascular SMCs in patients with AAA and an AAA mouse model. RNA sequencing analysis showed that ST3GAL5 silencing in human aortic SMCs induced ferroptosis. We showed that GM3 interacted directly with the extracellular domain of TFR1 (transferrin receptor 1), a cell membrane protein critical for cellular iron uptake, and disrupted its interaction with holo-transferrin. SMC-specific St3gal5 knockout exacerbated iron accumulation at lesion sites and significantly promoted AAA development in mice, whereas GM3 supplementation suppressed lipid peroxidation, reduced iron deposition in aortic vascular SMCs, and markedly decreased AAA incidence. CONCLUSIONS: Together, these results suggest that GM3 dysregulation promotes ferroptosis of vascular SMCs in AAA. Furthermore, GM3 may constitute a new therapeutic target for AAA.


Aortic Aneurysm, Abdominal , Ferroptosis , Humans , Mice , Animals , G(M3) Ganglioside/metabolism , Proteomics , Muscle, Smooth, Vascular/metabolism , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/prevention & control , Aortic Aneurysm, Abdominal/metabolism , Iron , Myocytes, Smooth Muscle/metabolism , Disease Models, Animal
9.
Int J Biol Macromol ; 250: 126330, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37579898

Levan is a high-valued ß-(2,6)-linked fructan with promising physicochemical and physiological properties and has diverse potential applications in the food, nutraceutical, pharmaceutical and cosmetic industry, but its commercial availability is still restricted to the relatively high costs of production. In this study, a strain identified as Microbacterium sp. XL1 was isolated from soil and highly produced exopolysaccharide (EPS). HPLC, FTIR and NMR spectroscopy revealed XL1-EPS is a levan-type fructan connected by ß-(2, 6) linkages. SEM, DLS and TGA-DSC analysis showed that XL1-EPS processed high morphological versatility, narrow size distribution in its solutions and excellent thermal stability. The levan yield reached 83.67 ± 4.06 g/L with corresponding productivity of 3.49 ± 0.17 g/L/h and a conversion yield of 39.8 ± 1.9 % using sucrose (210 g/L) as substrates under the optimal cultivation conditions concluded by the response surface methodology (RSM). More strikingly, the XL1 strain also has multi-type fructanases to generate levanbiose, kestose, DFA IV and other L-FOSs. These results suggest Microbacterium sp. XL1 is a promising strain to produce levan and can provide various levan/inulin-degrading enzymes to create a great diversity of FOSs.

10.
Heliyon ; 9(7): e18220, 2023 Jul.
Article En | MEDLINE | ID: mdl-37501983

The oxidation resistance of TiC/Ni composites is crucial for its application in high-temperature oxidation environment. The in-situ TiC/Ni composites are fabricated by reactive sintering method, and the influence of TiC particle size on oxidation resistance of composite is studied. The particle size of TiC increases from 1.54 µm to 2.40 µm as the sintering holding time prolongs from 2 h to 6 h, due to the dissolution-reprecipitation mechanism. The oxidation kinetics of in-situ TiC/Ni composite with different TiC particle size oxidized at 800 °C for 100 h obeys parabolic kinetics. The oxidation mass gain of composite increases from 7.471 mg•cm-2 to 8.454 mg•cm-2, and the oxide scale on composites becomes thicker, as the particle size of TiC increases from 1.54 µm to 2.40 µm. The reduction of TiC particle size facilitates the formation of a dense and continuous oxide scale on composite, helpful to restrict the diffusion of O, Ti and Ni atoms during oxidation. Therefore, the reduction of TiC particle size is contributed to the optimization of oxidation resistance of in-situ TiC/Ni composites.

11.
CNS Neurosci Ther ; 29(10): 2775-2786, 2023 10.
Article En | MEDLINE | ID: mdl-37269061

AIMS: Complex cellular communications between glial cells and neurons are critical for brain normal function and disorders, and single-cell level RNA-sequencing datasets display more advantages for analyzing cell communications. Therefore, it is necessary to systematically explore brain cell communications when considering factors such as sex and brain region. METHODS: We extracted a total of 1,039,459 cells derived from 28 brain single-cell RNA-sequencing (scRNA-seq) or single-nucleus RNA-sequencing (snRNA-seq) datasets from the GEO database, including 12 human and 16 mouse datasets. These datasets were further divided into 71 new sub-datasets when considering disease, sex, and region conditions. In the meanwhile, we integrated four methods to evaluate ligand-receptor interaction score among six major brain cell types (microglia, neuron, astrocyte, oligodendrocyte, OPC, and endothelial cell). RESULTS: For Alzheimer's disease (AD), disease-specific ligand-receptor pairs when compared with normal sub-datasets, such as SEMA4A-NRP1, were identified. Furthermore, we explored the sex- and region-specific cell communications and identified that WNT5A-ROR1 among microglia cells displayed close communications in male, and SPP1-ITGAV displayed close communications in the meninges region from microglia to neurons. Furthermore, based on the AD-specific cell communications, we constructed a model for AD early prediction and confirmed the predictive performance using multiple independent datasets. Finally, we developed an online platform for researchers to explore brain condition-specific cell communications. CONCLUSION: This research provided a comprehensive study to explore brain cell communications, which could reveal novel biological mechanisms involved in normal brain function and neurodegenerative diseases such as AD.


Alzheimer Disease , Neurodegenerative Diseases , Semaphorins , Male , Humans , Animals , Mice , RNA, Small Nuclear , Gene Expression Profiling/methods , Ligands , Single-Cell Gene Expression Analysis , Alzheimer Disease/genetics , Solitary Nucleus
12.
Int J Mol Sci ; 24(9)2023 May 03.
Article En | MEDLINE | ID: mdl-37175914

High NaCl (200 mM) increases the transcription of phospholipase Dδ (PLDδ) in roots and leaves of the salt-resistant woody species Populus euphratica. We isolated a 1138 bp promoter fragment upstream of the translation initiation codon of PePLDδ. A promoter-reporter construct, PePLDδ-pro::GUS, was introduced into Arabidopsis plants (Arabidopsis thaliana) to demonstrate the NaCl-induced PePLDδ promoter activity in root and leaf tissues. Mass spectrometry analysis of DNA pull-down-enriched proteins in P. euphratica revealed that PeGLABRA3, a basic helix-loop-helix transcription factor, was the target transcription factor for binding the promoter region of PePLDδ. The PeGLABRA3 binding to PePLDδ-pro was further verified by virus-induced gene silencing, luciferase reporter assay (LRA), yeast one-hybrid assay, and electrophoretic mobility shift assay (EMSA). In addition, the PeGLABRA3 gene was cloned and overexpressed in Arabidopsis to determine the function of PeGLABRA3 in salt tolerance. PeGLABRA3-overexpressed Arabidopsis lines (OE1 and OE2) had a greater capacity to scavenge reactive oxygen species (ROS) and to extrude Na+ under salinity stress. Furthermore, the EMSA and LRA results confirmed that PeGLABRA3 interacted with the promoter of AtPLDδ in transgenic plants. The upregulated AtPLDδ in PeGLABRA3-transgenic lines resulted in an increase in phosphatidic acid species under no-salt and saline conditions. We conclude that PeGLABRA3 activated AtPLDδ transcription under salt stress by binding to the AtPLDδ promoter region, conferring Na+ and ROS homeostasis control via signaling pathways mediated by PLDδ and phosphatidic acid.


Arabidopsis , Populus , Salt Tolerance/genetics , Populus/genetics , Populus/metabolism , Reactive Oxygen Species/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant
13.
J Cell Mol Med ; 27(11): 1465-1476, 2023 06.
Article En | MEDLINE | ID: mdl-37078407

There is a growing body of evidence that innate immunity also plays an important role in the progression of hepatitis B virus (HBV) infection. However, there is less study on systematically elucidating the characteristics of innate immunity in HBV-infected pregnant women. We compared the features of peripheral blood mononuclear cells in three healthy pregnant women and three HBV-infected pregnant women by single-cell RNA sequencing. 10 DEGs were detected between groups and monocytes were the main expression source of most of the DEGs, which involved in the inflammatory response, apoptosis and immune regulation. Meanwhile, qPCR and ELISA were performed to verify above genes. Monocytes displayed immune response defect, reflecting poor ability of response to IFN. In addition, eight clusters were identified in monocytes. We identified molecular drivers in monocytes subpopulations.TNFSF10+ monocytes, MT1G+ monocytes and TUBB1+ monocytes were featured with different gene expression pattern and biological function.TNFSF10+ monocytes and MT1G+ monocytes were characterized by high levels of inflammation response.TNFSF10+ monocytes, MT1G+ monocytes and TUBB1+ monocytes showed decreased response to IFN. Our results dissects alterations in monocytes related to the immune response of HBV-infected pregnant women and provides a rich resource for fully understanding immunopathogenesis and developing effective preventing HBV intrauterine infection strategies.


Hepatitis B , Pregnancy Complications, Infectious , Humans , Pregnancy , Female , Hepatitis B virus/genetics , Monocytes , Pregnant Women , Leukocytes, Mononuclear/metabolism , Hepatitis B Surface Antigens , Pregnancy Complications, Infectious/genetics , Hepatitis B/genetics , Hepatitis B/metabolism , Sequence Analysis, RNA
14.
J Sleep Res ; 32(2): e13736, 2023 04.
Article En | MEDLINE | ID: mdl-36163423

The hypocretin neurons in the lateral hypothalamus are connected not only to brain alertness systems but also to brainstem nuclei that regulate blood pressure and heart rate. The premise is that regulation of blood pressure and heart rate is altered and affected by methylphenidate, a stimulant drug in children with narcolepsy with cataplexy. The changes in 24-hr ambulatory systolic and diastolic blood pressure and heart rate were compared among pre-treated narcolepsy with cataplexy patients (40 males, 10 females), with mean age 10.4 ± 3.5 years (M ±â€…SD, range 5-17 years) with values from 100 archival age-sex-body mass index matched controls. Patients had a lower diurnal systolic blood pressure (-6.5 mmHg; p = 0.000) but higher heart rate (+11.0 bpm; p = 0.000), particularly evident in the waketime, while diastolic blood pressure was comparable. With methylphenidate (18 mg sustained release at 08:00 hours), patients with narcolepsy with cataplexy had higher systolic blood pressure (+4.6 mmHg, p = 0.015), diastolic blood pressure (+3.3 mmHg, p = 0.005) and heart rate (+7.1 bpm, p = 0.028) during wake time, but nighttime cardiovascular values were unchanged from pre-treated values; amplitude variation in cardiovascular values was unchanged over 24 hr. In conclusion, children with narcolepsy with cataplexy had downregulation blood pressure profile but a higher heart rate, and lesser non-dipping profiles. Daytime methylphenidate treatment increases only waketime blood pressure and further elevated heart rate values.


Cataplexy , Methylphenidate , Narcolepsy , Neuropeptides , Male , Female , Humans , Child , Child, Preschool , Adolescent , Cataplexy/drug therapy , Heart Rate/physiology , Blood Pressure/physiology , Narcolepsy/drug therapy , Methylphenidate/pharmacology , Methylphenidate/therapeutic use
15.
Redox Rep ; 27(1): 270-278, 2022 Dec.
Article En | MEDLINE | ID: mdl-36357965

Objectives: Caffeine has been shown to reduce the incidence of bronchopulmonary dysplasia (BPD). To investigate the protective mechanism of caffeine in a hyperoxia-based cell model of BPD in vitro.Methods: Type II alveolar epithelial cells (AECs II) were isolated and randomly divided into 6 groups: the normal, hyperoxia, caffeine (50 µM caffeine), antagonist (5 µM ZM241385), agonist (5 µM CGS21680), and DMSO groups. Transfection with siRNA against adenosine A2A receptor (siA2AR) was performed in AECs II.Results: Caffeine alone or in combination with adenosine A2A receptor (A2AR) antagonist inhibited apoptosis, promoted proliferation and reduced oxidative stress (OS). The cyclic adenosine monophosphate (cAMP), protein kinase A (PKA) mRNA, A2AR mRNA and the protein levels of A2AR, phospho-Src, phospho-ERK1/2, phospho-P38 and cleaved caspase-3 were decreased in the caffeine and antagonist groups compared with that in the hyperoxia group. However, the effects of caffeine above were weakened by the A2AR agonist. Knockdown of A2AR showed similar results to caffeine.Discussion: Caffeine can reduce apoptosis, promote proliferation, and alleviate OS in hyperoxia-induced AECs II injury by inhibiting the A2AR/cAMP/PKA/Src/ERK1/2/p38MAPK signaling pathway. Caffeine and A2AR may serve as a promising therapeutic target for BPD in prematurity.


Hyperoxia , Lung Injury , Infant, Newborn , Humans , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/pharmacology , Caffeine/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/pharmacology , MAP Kinase Signaling System , Hyperoxia/complications , Hyperoxia/drug therapy , Signal Transduction , Cyclic AMP/metabolism , Cyclic AMP/pharmacology , Oxidative Stress , RNA, Messenger/metabolism , RNA, Messenger/pharmacology
16.
Front Oncol ; 12: 868866, 2022.
Article En | MEDLINE | ID: mdl-36212422

Estrogen receptor α (ERα) is the dominant tumorigenesis driver in breast cancer (BC), and ERα-positive BC (ERα+ BC) accounts for more than two-thirds of BC cases. MOF (males absent on the first) is a highly conserved histone acetyltransferase that acetylates lysine 16 of histone H4 (H4K16) and several non-histone proteins. Unbalanced expression of MOF has been identified, and high MOF expression predicted a favorable prognosis in BC. However, the association of MOF with ERα and the regulatory mechanisms of MOF in ERα signaling remain elusive. Our study revealed that the expression of MOF is negatively correlated with that of ERα in BC. In ERα+ BC cells, MOF overexpression downregulated the protein abundance of ERα in both cytoplasm and nucleus, thus attenuating ERα-mediated transactivation as well as cellular proliferation and in vivo tumorigenicity of BC cells. MOF promoted ERα protein degradation through CUL4B-mediated ubiquitin-proteasome pathway and induced HSP90 hyperacetylation that led to the loss of chaperone protection of HSP90 to ERα. We also revealed that suppression of MOF restored ERα expression and increased the sensitivity of ERα-negative BC cells to tamoxifen treatment. These results provide a new insight into the tumor-suppressive role of MOF in BC via negatively regulating ERα action, suggesting that MOF might be a potential therapeutic target for BC.

17.
Clin Immunol ; 241: 109075, 2022 08.
Article En | MEDLINE | ID: mdl-35809855

Microglia is a major class of brain-resident myeloid cells and non-coding RNAs (ncRNAs) serves as key regulators in microglia homeostasis and inflammatory process. Here, we constructed the systematical association between microglia and ncRNAs including miRNAs, lncRNAs and circRNAs from two aspects, manual retrieval and computational detection. A total of 648 experimental verified ncRNA-microglia associations were obtained from published studies, including ncRNA regulatory patterns within different experimental models. Furthermore, we extracted 9 miRNA and 1 lncRNA expression profiles from the GEO database. Also, we obtained 31 sample-match miRNA and mRNA expression profiles, containing a total of 2335 normal or disordered brain samples. Finally, we developed a platform named MG-ncRexplorer (http://bio-bigdata.hrbmu.edu.cn/MG-ncRexplorer/), exploring the associations between ncRNAs and microglia among experimental validated and computational detection. To demonstrate the usage of MG-ncRexplorer, we constructed regulatory target networks based on manual retrieval associations and identified risk glioma miRNAs among multiple high-throughput expression profiles.


MicroRNAs , RNA, Long Noncoding , Brain/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Microglia/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
18.
J Exp Clin Cancer Res ; 41(1): 228, 2022 Jul 21.
Article En | MEDLINE | ID: mdl-35864552

BACKGROUND: Abnormal glycosylation in a variety of cancer types is involved in tumor progression and chemoresistance. Glycosyltransferase C1GALT1, the key enzyme in conversion of Tn antigen to T antigen, is involved in both physiological and pathological conditions. However, the mechanisms of C1GALT1 in enhancing oncogenic phenotypes and its regulatory effects via non-coding RNA are unclear. METHODS: Abnormal expression of C1GALT1 and its products T antigen in human bladder cancer (BLCA) were evaluated with BLCA tissue, plasma samples and cell lines. Effects of C1GALT1 on migratory ability and proliferation were assessed in YTS-1 cells by transwell, CCK8 and colony formation assay in vitro and by mouse subcutaneous xenograft and trans-splenic metastasis models in vivo. Dysregulated circular RNAs (circRNAs) and microRNAs (miRNAs) were profiled in 3 pairs of bladder cancer tissues by RNA-seq. Effects of miR-1-3p and cHP1BP3 (circRNA derived from HP1BP3) on modulating C1GALT1 expression were investigated by target prediction program, correlation analysis and luciferase reporter assay. Functional roles of miR-1-3p and cHP1BP3 on migratory ability and proliferation in BLCA were also investigated by in vitro and in vivo experiments. Additionally, glycoproteomic analysis was employed to identify the target glycoproteins of C1GALT1. RESULTS: In this study, we demonstrated upregulation of C1GALT1 and its product T antigen in BLCA. C1GALT1 silencing suppressed migratory ability and proliferation of BLCA YTS-1 cells in vitro and in vivo. Subsets of circRNAs and miRNAs were dysregulated in BLCA tissues. miR-1-3p, which is reduced in BLCA tissues, inhibited transcription of C1GALT1 by binding directly to its 3'-untranslated region (3'-UTR). miR-1-3p overexpression resulted in decreased migratory ability and proliferation of YTS-1 cells. cHP1BP3 was upregulated in BLCA tissues, and served as an miR-1-3p "sponge". cHP1BP3 was shown to modulate migratory ability, proliferation, and colony formation of YTS-1 cells, and displayed tumor-suppressing activity in BLCA. Target glycoproteins of C1GALT1, including integrins and MUC16, were identified. CONCLUSIONS: This study reveals the pro-metastatic and proliferative function of upregulated glycosyltransferase C1GLAT1, and provides preliminary data on mechanisms underlying dysregulation of C1GALT1 via miR-1-3p / cHP1BP3 axis in BLCA.


MicroRNAs , Urinary Bladder Neoplasms , 3' Untranslated Regions , Animals , Antigens, Viral, Tumor , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Gene Expression Regulation, Neoplastic , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Nuclear Proteins/metabolism , RNA, Circular , Urinary Bladder Neoplasms/pathology
19.
Front Pharmacol ; 13: 888243, 2022.
Article En | MEDLINE | ID: mdl-35662693

Consortin (CNST) is a protein located on the trans-Golgi network that can target transmembrane proteins to the plasma membrane. Although CNST was discovered more than 10 years ago, there are still not enough studies on its function. During our search for possible new acute myeloid leukemia (AML) markers, we found that CNST was overexpressed in almost all patients with AML. By analyzing profiling data from public databases, we found that CNST expression inversely correlated with overall survival among AML patients. There was a great variation in CNST expression among different subtypes of AML, and the expression was the highest in the t(8,21) subtype, which was probably due to the direct regulation of CNST transcription by RUNX1-RUNX1T1. In addition, we analyzed the expression of CNST in different cells of the hematopoietic system. We found that CNST was associated with the low differentiation degrees of hematopoietic cells and had the highest expression level in leukemia stem cells (LSCs). Finally, we analyzed the CNST-related gene network and found that the genes negatively correlated with CNST are involved in various immune-related pathways, which indicates that CNST is likely related to immune evasion, LSC niche retention, and assembly of stress granules. In conclusion, our study suggests that CNST has the potential to be a diagnostic and prognostic biomarker for AML.

20.
Front Immunol ; 13: 853074, 2022.
Article En | MEDLINE | ID: mdl-35677045

Glioma is the most common malignant tumor of the central nervous system. Tumor purity is a source of important prognostic factor for glioma patients, showing the key roles of the microenvironment in glioma prognosis. In this study, we systematically screened functional characterization related to the tumor immune microenvironment and constructed a risk model named Glioma MicroEnvironment Functional Signature (GMEFS) based on eight cohorts. The prognostic value of the GMEFS model was also verified in another two glioma cohorts, glioblastoma (GBM) and low-grade glioma (LGG) cohorts, from The Cancer Genome Atlas (TCGA). Nomograms were established in the training and testing cohorts to validate the clinical use of this model. Furthermore, the relationships between the risk score, intrinsic molecular subtypes, tumor purity, and tumor-infiltrating immune cell abundance were also evaluated. Meanwhile, the performance of the GMEFS model in glioma formation and glioma recurrence was systematically analyzed based on 16 glioma cohorts from the Gene Expression Omnibus (GEO) database. Based on multiple-cohort integrated analysis, risk subpathway signatures were identified, and a drug-subpathway association network was further constructed to explore candidate therapy target regions. Three subpathways derived from Focal adhesion (path: 04510) were identified and contained known targets including platelet derived growth factor receptor alpha (PDGFRA), epidermal growth factor receptor (EGFR), and erb-b2 receptor tyrosine kinase 2 (ERBB2). In conclusion, the novel functional signatures identified in this study could serve as a robust prognostic biomarker, and this study provided a framework to identify candidate therapeutic target regions, which further guide glioma patients' clinical decision.


Glioblastoma , Glioma , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Glioblastoma/pathology , Glioma/genetics , Glioma/pathology , Humans , Prognosis , Tumor Microenvironment
...